Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions.

نویسندگان

  • Lori Adams-Phillips
  • Jinrong Wan
  • Xiaoping Tan
  • F Mark Dunning
  • Blake C Meyers
  • Richard W Michelmore
  • Andrew F Bent
چکیده

A dissection of plant defense pathways was initiated through gene expression profiling of the responses of a single Arabidopsis thaliana genotype to isogenic Pseudomonas syringae strains expressing one of four different cloned avirulence (avr) genes. Differences in the expression profiles elicited by different resistance (R)-avr interactions were observed. A role for poly(ADP-ribosyl)ation in plant defense responses was suggested initially by the upregulated expression of genes encoding NUDT7 and poly(ADP-ribose) glycohydrolase in multiple R-avr interactions. Gene knockout plant lines were tested for 20 candidate genes identified by the expression profiling, and Arabidopsis NUDT7 mutants allowed less growth of virulent P. syringae (as previously reported) but also exhibited a reduced hypersensitive-response phenotype. Inhibitors of poly(ADP-ribose) polymerase (PARP) disrupted FLS2-mediated basal defense responses such as callose deposition. EIN2 (ethylene response) and IXR1 and IXR2 (cellulose synthase) mutants impacted the FLS2-mediated responses that occur during PARP inhibition, whereas no impacts were observed for NPR1, PAD4, or NDR1 mutants. In the expression profiling work, false-positive selection and grouping of genes was reduced by requiring simultaneous satisfaction of statistical significance criteria for each of three separate analysis methods, and by clustering genes based on statistical confidence values for each gene rather than on average fold-change of transcript abundance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells.

Several bacterial avr genes have been shown to contribute to virulence on susceptible plants lacking the corresponding resistance (R) gene. The mechanisms by which avr genes promote parasitism and disease, however, are not well understood. We investigated the role of the Pseudomonas syringae pv. tomato avrRpt2 gene in pathogenesis by studying the interaction of P. syringae pv. tomato strain Pst...

متن کامل

Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack.

Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set o...

متن کامل

Induced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition

Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...

متن کامل

A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana

Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) or loss of Arabidopsis thaliana PARG1 (poly(ADP-ribose) glycohydrolase) disrupt a subset of plant defenses. In the present study we examined the impact of altered poly(ADP-ribosyl)ation on early gene expression induced by the microbe-associate molecular patterns (MAMPs) flagellin (flg22) and EF-Tu (elf18). Stringent statistical an...

متن کامل

A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases.

The successful recognition of pathogen-associated molecular patterns (PAMPs) as a danger signal is crucial for plants to fend off numerous potential pathogenic microbes. The signal is relayed through mitogen-activated protein kinase (MPK) cascades to activate defenses. Here, we show that the Pseudomonas syringae type III effector HopF2 can interact with Arabidopsis thaliana MAP KINASE KINASE5 (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2008